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Abstract. We give a gauge invariant formulation & = 2 supersymmetric abelian Toda
field equations inN = 2 superspace. Superconformal invariance is studied. The conserved
currents are shown to be associated with Drinfeld—Sokolov type gauges. The extension to non-
abelianN = 2 Toda equations is discussed. Very similar methods are then applied to a matrix
formulation in N = 2 superspace of one of thié = 2 KdV hierarchies.

0. Introduction

The N = 2 supersymmetric Liouville equation together with its Lax representation in
superspace was first given in [6]. The generalization to the abelian Toda equations have been
derived and studied in [2]. These models are associated with the principal embedding of the
superalgebral(2|1) insidesl(n+1|n). Here we construct a set of gauge invariant equations
in N = 2 superspace which, in a particular gauge, reduce tavthe 2 supersymmetric
abelian Toda equations. This is in the spirit of the works [3] and [4], where such a gauge
invariant formulation was constructed for bosonic Toda models in ordinary space, and for
supersymmetric Toda models iN = 1 superspace. Th& = 1 superspace approach
leads to a natural interpertation for the use of superalgebras admitting a pringiga|2)
embedding [5]. TheN = 2 abelian Toda equations correspond to the cases when this
principalosp(1]|2) embedding may be extended tosd(2|1) embedding. The consistency of
the gauge invariant equations is ensured by an interesting interplay between the geometry of
the extended superspace and the structure ofif@€l) superalgebra. Such a gauge invariant
formulation allows for an easy discussion of the conserved currents of the Toda equations.
However, it should be stressed that the formulation we give in this article is restricted to
the discussion of field equations. We do not have an explicitly supersymmetric action.
A Hamiltonian formulation in extended superspace is presently out of teaéimother
difference with previous works is that in thé = 2 superspace, it seems hard to interpret
the gauge invariant field equations as a gauged WZNW model.

The paper is organized as follows. In the first section we recall some basic facts about
the superalgebrd (n+1|n) and its principak/(2|1) embedding. In section 2, we write down
the gauge invariant field equations and establish the relation Mith 2 Toda equations.
Then we discuss the conserved current®Vof 2 Toda equations and their superconformal
transformations. Finally we apply this formalism to non-abelin= 2 Toda equations.
In section 3, we construct itV = 2 superspace a matrix Lax formulation of ah= 2
supersymmetric KdV hierarchy.

T It is to be noted that a Hamiltonian reduction approaciVte- 2V algebras was developed in [6].
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4988 F Delduc and M Magro
1. The superalgebrasl(n + 1|n) and its principal sl(2|1) subalgebra

This section is devoted to a short introduction to the superalgeb(ast 1jn). We shall
choose a basis which allows for an easy description of the pringlp2jil) subalgebra.

We consider the set abn + 1) x (2n + 1) real matrices. A convenient basis is given
by the matricesE; ; such that(E; ;)i = 8;x6;;. We define the supertrace of a matnik by
the alternate sum

2n+1 )
strM =) (=DM, (1.2)
i=1
The supercommutator of two matricég and N is
2n+1 . A
[M.N}ij =) (MyNy — (=D OEED N M), (1.2)
k=1

One then easily checks that gif[ N} = 0. The superalgebrg = si(n + 1|n) is the set
of matrices with zero supertrace. A Cartan subalgebrg @ generated by the diagonal
matrices

H =E;+Ein 1<i<2n. (1.3)

The superalgebrg is Z, graded,G = Gg + Gi. The % -grading of a matrixE; ; is i + j
modulo 2. We shall denote by a hat the superalgebra automorphism which reverses the sign
of odd elements,

(M) = (=1 My, (1.4)
The matricesE; ;11 just above the diagonal are associated with a complete set of fermionic
simple roots. We now define the principgdl(2|1) embedding. The Cartan subalgebra is
spanned by

n

n—i+1 _ i
H = ——Hy_ H=— — Hy;. 15
;:1 > 2i—1 ;=12 2 (1.5)

The matricesu, 1, associated with positive simple fermionic roots are

pi =Y Ezi 1z fir =Y Ezizi (1.6)
i=1 i=1
and the matriceg _, ji_ associated with negative simple fermionic roots are
po=Y (n—i+DEzz 1 fio=—Y iEa1z .7
i=1 i=1
The non-zero super-commutators are
[H, ps] =+5ps [H, pis] = £3/i+ (1.8)
{H’-ﬁ-v M—} =2H {ﬂ-‘rs I:L—} =2H (19)
{4, iy} = Ey {u—,p_y=E__ (1.10)

whereE,, and E__ are associated with the bosonic rootstaP|1). This algebra contains

the principal osp(2|1) subalgebra ofG. The Cartan generator isp, = H + H, the
operators associated with positive and negative fermionic simple roots, ateu, + 1.,

f- = u_+p_. The operator ag} is diagonalizable. The eigenvalues &g, —n <i < n.

We denote the corresponding eigenspaceg;by This defines a half-integer grading Gf

G = ®!__,Gi,2. Inthe basis that we have chosen, positive (negative) eigenvalues correspond
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to upper (lower) triangular matrices aufg is the Cartan subalgebra. Even elements have
integer gradation, and odd elements have half-integer gradation. In partigyland &
(u— andx_) belong to the eigenspacg (G_1).

Finally, in the following we alwafs use matrices taking values in some Grassmann
algebraGr = Grg @ Gri. These matrices will be called even if they belong&o=
Go ® Grg ® G; ® Gri and odd if they belong t@ = G5 ® Gr; @ G; ® Grg. We then define
the supercommutator of two matricdasand B belonging to€ or O by

[A,BY= ) AijBulEi;, Ex}. (1.11)
ikl

In the various cases, this takes the matrix product forms listed in table 1.

Table 1.

[A,B} A€f AeO

Bef& AB—BA AB—BA
Be® AB—-BA AB+BA

2. Gauge invariant formulation of the Toda field equations

The method used in this section is an extension of that developed in [3]. However, our
method only applies to the field equations, and we do not have an explicitly supersymmetric
action or Hamiltonian formulation.

2.1. Zero curvature equations and constraints

We denote the supergroup corresponding to the superalggbra si(n + 1jn) by
G = SL(n + 1jn). We use the grading described in the last section, and separage
G =G.0® GoD G-0. G0 contains all upper triangular matrices, o all lower triangular
matrices. Go is the Cartan subalgebra spanned by diagonal matrices. The supergroups
corresponding respectively th.q, Go, G- Will be denoted byG .o, Go, G-o. The elements
of G.o (G.o) are upper (lower) triangular even matrices with ones on the diagonal. The
coordinates of th&/ = 2 superspace are the light-cone coordinétes, x~—) together with
the Grassmann coordinatés™, 6+, 0, 6~). Notice that we use alV = 2 supersymmetry
algebra withS O (1, 1) automorphism group. The covariant spinor derivatives are

d 9 d

D, = 2o T %o, D, = P +6%0, 4 04 = pyes (2.1)

and D_, D_ are similarly defined. These derivatives satisfy the algebra
Di == D?,r == O {D+, D+} - 28++ {[j+, B_} == 0 (22)

where we use a tilde as a generic notation for unbarred or barred oljects, D, or D,

We now introduce the superfields that we need for the gauge invariant formulation of
Toda equations. The first ig(x, 0, 6) which takes values in the supergroGp Then there
are spinor gauge superfields, (x, 0, 60), Ai(x,0,0). A, and A, are upper triangular
odd matrices,A_ and A_ are lower triangular odd matrices. The gauge transformations
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R(x,0,0) € G.g and L(x,6,0) € G_o act on the superfielg(x, 6, ) by left and right
translations

g —> LgR (2.3)
and on the gauge superfields by

A, — R'D,R+R AR (2.4)

A.— D_LL*+LA_L™. (2.5)

At that point, the connections, andA_ transform under different gauge groups. However,
the field g acts as a ‘bridge’ between the two gauge groups and may be used to construct
connections transforming under the same gauge group,

By =-3A, g '+ D, gg? B_=A_. (2.6)
The connectionss.. only transform under the left gauge group

By —> (DyL)L™*+ LB.L (2.7)
One could equivalently use a set of connections transforming only under the right group

C.=A, C.=-5YA g+¢ D g (2.8)

C. —> R™*D.R+ R *C.R. (2.9)

We now require theB. connections to have zero curvature. This gives ten equations
corresponding to the vanishing of the spinor—spinor components of the curvature. Two of
these equations simply determine the vector component of the connection in terms of the
spinor components

2B, =DyB, + DB, —[B,, B} (2.10)

and there is an analogous equation determiing. These are just the familiar conventional
constraints of super-Yang—Mills theories. Among the eight remaining equations, four
involve only one light-cone chirality

D B.—B B =0&D_ A —A_A_=0 (2.12)

and there are similar equations fBr., B_, or, equivalently, forA,, A_. These again are

well known constraints of super-Yang—Mills theories, usually referred to as representation
preserving constraints. Finally, there remains four equations involving both light-cone
chiralities

D.B +D B, —[B,, B}=0. (2.13)

In order to recover the Toda equations in this framework, one has to add to the zero
curvature equations some gauge invariant constraints. These constraints involve the roots
of the principals/(2) embedding in the bosonic case, and the simple fermionic roots of
the principalosp(2|1) embedding in theV = 1 supersymmetric case. Here it involves the
simple fermionic roots of the principal (2|1) embedding, e.g.

(B1)-0 = jis (Cwo =il (2.14)

The gauge invariance of these constraints as usual follows from the facuthand

a+ (u— and i) belong to the spac€: (G_1) with smallest positive (negative) grade.
Before establishing the relation with the Toda equations as given in [2], let us study the
superconformal invariance of our equations. Beside gauge invariance, let us note that the
zero curvature equations possess two additional symmetries. The first is a loop invariance,
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where the infinitesimal parametdgsandry belong to the grade zero subalgelia It acts
on the fields by

S¢g=log+gro  SA;=[Ayr]  SA_=[l,A]. (2.15)
The parameters depend only on one light-cone chirality,
D_lg=D_lp=0 Dyro= Dyro=0. (2.16)

The second symmetry i§ = 2 superconformal invariance. Let us denotefoge ™, ¢ 7)
the differential operator

K™, e ) =€,y + 3Dy Dy + D™Dy + e 0+ ID_e D

+3D_e D (2.17)
where the infinitesimal parameter$* depend only on one light-cone chirality,
D_ett=D_ e =0 Dye " =Die =0. (2.18)

The superconformal transformations of the scalar superigidd of the spinor components
of the connection are

sg=K( e g )
SAy =K(e"", e )AL+ 3DiDie™T A,
(SAi = K(E++, Eii)Ai + %DiDiGiiAi. (219)

The constraints (2.14) are not invariant separately under Kac—Moody and superconformal
transformations. There is, however, a unique choice of the Kac—-Moody paramgters
andrg in terms of the superconformal parameters  and ¢~ such that the combined
transformations leave the constraints invariant. It is given by

lo=-D,D,e"™"H - D,D, e H ro=-D_D_e "H—D_D_e H. (2.20)

Thus we conclude that the constraints (2.14) do allowMos 2 superconformal invariance,
provided the superconformal transforation laws are suitably modified.

2.2. Relation withV = 2 Toda equations

This relation is most easily obtained by choosing the particular gauge where the superfield
g is constrained to belong to the subgrodp,

2n
e=s=en( L o). 21)
i=1
In this gauge, the constraints (2.14) simply determine the spinor connections

A+ = —g61ﬁ+g0 A~_ = —go/:l,_gal. (222)

We then have to take into account the fact that these connections are constrained superfields.
They satisfy equations (2.11) and (2.12), which may be translated into the following
constraints orgg

(1 D+lgogo_1] =0 [_ﬂ+» Dﬁgpgo‘l] =0
[1—. 8o D-go] =0 [i—, g0 "D_go] = 0. (2.23)

More explicitly, the fieldsp’ satisfy the following supersymmetric chirality constraints
D¢ t=D_¢? =0 D,¢p? = D_¢? =0. (2.24)
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Among the four zero curvature equations (2.13), there remains only two dynamical equations

D_(Dygogo ) + {1y, gop-go '} =0 D_(Dygogo™) + {ii+, goit-go '} = 0 (2.25)
which, when expressed on the fields become theV = 2 Toda equations given in [2],

D,D_¢¥ t=mn—j+1e" " D.D_¢% = —je" 7, (2.26)

The next section will be devoted to a discussion of conserved currents and of various
Drinfeld—Sokolov type gauges.

2.3. Conserved currents and gauge choices

From the zero curvature equations it is clear that any gauge invariant funfctisn, By)
or G(C_, C-) will satisfy the light-cone chirality conditions

D_F(B,,B,)=D_F(B,,B,)=0 D,G(C_,C_)=D,G(C_,C_)=0. (2.27)

Let us concentrate on the functiod& B, , B,). We shall now find a generating set for
these gauge invariant functions [8]. The elements of this set are differential polynomials in
the matrix elements ofB.)<o, (B;)<o. These polynomials will be found by exhibiting a
unique gauge transformation which brings the connections to a prescribed form. In order to
do this, we use our knowledge of thé = 1 case [4]. We first consider the sub1 + B,

which is constrained by equation (2.14) to satigB + B, )-o = f,. The adjoint action of

the osp(2|1) generatorf, on the gauge algebr@._ is non-degenerate. Let us separétg

into (Im adf,)<o plus some graded supplementary subspage This space has one basis
elementl_; , at each strictly negative grade. Then there exist a unique gauge transformation
el € G_g such that

eﬁ(D+ + D+ (B<o+ B+ f)e€ =D+ D+ W+ fy (2.28)

and W = Zfil W_;2T_; 2 belongs toV¢. Moreover, bothF and W are differential
polynomials in the matrix elements 0B, )<o and (B, )<o. It remains to be seen whether
all polynomialsW_; > are independent or not. To do this, we restrict to the special case
when the basis element &k, at half-integer gradé€_; .1/, are related to the basis element
at integer grade by

T iy12 = ailpy, Ti] + Bilie, T-] o # Bi. (2.29)

Moreover, we require the set¥_;, [u,, T-;], 1 <i <n}and{T_;, [y, T-;], 1 <i < n}

to span abelian superalgebras. We shall exhibit later three choices for the Bpace
satisfying these requirements. Then it may be shown iteratively that equation (2.28), together
with the nonlinear constraints (2.11) and (2.12) completely determine the gauge-fixed form
of (B;)<o and(B)<o to be

(B+)Zfo = Zai(_D+Wi+l/2T—i + Wigapelus, T2 (2.30)
i1

- f n - —
(B+)io = Z Bi(—=DyWii1oT_ ;i + Wigapoljiy, T-i]). (2.31)
i=1
From this we conclude that there are omlyndependent polynomial®; 17, 1 <i < n.
This is half the number of conserved currents found in she- 1 framework, which was
to be expected since an unconstrairigdd) superfield contains twdl, 0) superfields. Let
us give examples of gauges satisfying our requirements. The first was given in [2], it is
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a vertical gauge wheré_; = Ey111, T-i112 = E2 1 = [fi4+, T—;]. Then the gauge-fixed
forms are

f = f - —
BZo=0  (BNZy=) (=D ViEai 111+ ViEz1). (2.32)
i=1
One may construct as well a horizontal gauge by chooding.; 1 = E2,112-1 and
T_nyi-12 = Eony12i = —[p+, T-nyi—1]. The gauge-fixed forms are
f ! 5 f
B2y =) (DyXiEmira1+ XiEain2)  (B)%p=0. (233

i=1
A third possibility is to take amwsp(2|1) lowest weight gauge, that is to sdy; = (E__)’
andT_; 12 = [ —fi4, (E__)'], where the matrixE__ has been defined in equation (1.10).
Then both gauge-fixed forms are non-zero and read

(B)% =D (=D ZiT; + Zilp4. T-)) (2.34)
i=1

By =Y (D+ZiT-i = Zil+. T-1]). (2.35)
i=1

It is in this gauge that the conserved currents have simple= 2 superconformal
transformations. From equations (2.15), (2.19) and (2.20) we find the superconformal
transformations o3, and B, to be

8B, =K(e™, e )By + 3DyD.e*T By +[lo, By] + Dylo (2.36)
5B+ = K(E++, 677)B+ —+ %D+D+E++B+ —+ [lo, B+] =+ D+lo. (237)

The lowest weight gauge (2.35) is not stable under these transformations. However, only
a very simple compensating gauge transformatianss; is needed, wheréG is non-zero

only at grades—% and —1. One finds that all currents besidlge are N = 2 superprimary
fields,

8Z; =K(e™, e )Zj+ joy et Z; (2.38)
and Z; has the transformation law of a super-energy—momentum tensor
521 = K(€++, 677)21 + 8++E++Zl + %[D+, l_)+]a++€++. (239)

The N = 2 Miura transformation, expressing the conserved curr@nisa equation (2.32)
in terms of the Toda superfield is discussed in [2]. We will meet this transformation
again in the context of th& = 2 supersymmetric KdV equation in section 3.

2.4. Non-abelianv = 2 Toda equations

It is clear how the methods developed in [2] and in the present article can be generalized
to the case of non-abelian Toda equations. We shall not try to construct a general theory
here, but restrict our attention to the Toda equations associated with(2ih) embedding

inside s/(n + 1jn). Such equations have the property that one can find a generating
set for the conserved currents such that all elements besid®/ teke 2 superconformal
tensor areN = 2 superprimary fields. The classification gf2|1) embeddings inside a
simple superalgebra has been established in [11]. In our case, it amounts to decompose
the 21 + 1 x 2n + 1 matrices into blocks so that the size of the diagonal blocks is odd.
These diagonal blocks form a regular subalgebra. The semisimple part of this subalgebra
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is a sum of superalgebras of the typ&n; + 1|n;) or si(m;|m; + 1). We then consider
the s1(2|1) embedding which is principal in this superalgebra. Thus (i1,) is still the
sum of those matrice€y 12 (E2 2+1) Which are inside the diagonal blocks. All this

is very reminiscent of the construction @f(2) subalgebras ofl(n). A difference is that

in the case of/(2|1) embeddings, the ordering of the blocks is of some importance. For
examples, the decompositions53+1+1 and 5= 1+ 3+ 1 lead to different embeddings.
Just as in the principal case, thep(1]2) generatoreo = H + H induces a half-integer
gradation of the superalgebs&n + 1|n), andGy is the subalgebra of grade zero. The Toda
superfieldgo(x, 6, 6) belongs to the corresponding supergrasig We may then consider
the connections

By =Digogo' + ity Bo=—fofi-g" (2.40)

Then we write for these connections the zero curvature equations (2.11), (2.12) and (2.13).
The equations involving only one light-cone chirality lead to the constraints

(1 Dﬁgogal} =0 [t D+1g9g51} =0
[1—, 8 D-go} =0 (-, 8 D-go} = 0. (2.41)

The equations (2.14) involving both light-cone chiralities lead to the four dynamical
equations

D_(D;g0gy") + i+ 8oit-8y" + goit -8y ity = 0. (2.42)

This is not the end of the story, since one can easily check that, even taking into account
the constraints (2.41), the superfigjgl contains too many components. The situation here

is the same as in th& = 2 WZNW model [10], and we expect the constraints on the
supercurrents to be constructed from two classiealatricesr; andry of the superalgebra

Go. An r-matrix r = r; or r = rg is a linear transformation of, satisfying the classical
modified Yang—Baxter equation

r[rM, N} +r[M,rN}—[rM,rN} =[M, N}. (2.43)
Moreover, we require to be a super-antisymmetric involution
r?>=1d st(rM)N = —strM(rN). (2.44)

We noteGg andgG, the eigenspaces ofwith respective eigenvalues 1 andL. Then the
properties ofr show thatG; and G, are isotropic subalgebras ¢6. The data §o, G,
Gy ) is called a Manin triple.

Let us callG/ andG} the eigenspaces ef andrz with eigenvalue 1G; andG, the
eigenspaces of, andri with eigenvalue—1. Then we expect the form of the constraints
on the super-currents to be

Digogo'€ Gy Digogy' € Gy

8 'D_goeG; % D_goe gy . (2.45)
The possible choices for the-matrices are severely restricted if we require that the
constraints (2.41) coming from the zero curvature equations should be a subset of the
complete constraints (2.45). This turns out to be easily realized. We use the decompositions
of the superalgebrg, as
Go = (Im adu)o ® (IM adii;)o ® G5 = (Im adu_)o & (Im adii_)o ® Gy (2.46)

Wheregg is the singlet part oy under thes/(2|1) action. The set Im ad, is easily shown
to be a superalgebra on which the invariant quadratic form vanishes. Then we may take
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(Im aduy)o C Gy (Im adiiy)o C Gy
(Im adu_)o C G/ (Im adi_)o C G; . (2.47)

The subalgebrag; is orthogonal to the spaces Imjad, Im adiy, and one has the
commutation relations

[Gs.Im adus} € Im adus (G5, Im adii} € Im adi.. (2.48)

From these equations we conclude that we may choose freely the definitignamfd
inside G5. We may for instance take the upper (lower) triangular elemengSino be
included inGy , (G ). We denote byl; the identity matrix in theith block. Then the
matricesH; = 1; + 1,1 span the even-dimensional Cartan subalgebr@gofwe may take
Hy_1 € g;L and Hy € G, ;. With these choices, the complete constraints (2.45) imply
the constraints (2.41).

The construction of a gauge invariant formulation of tNe= 2 non-abelian Toda
equations follows exactly the same line as the abelian case. The only difference is that
beside the constraints (2.14), one should add gauge invariant constraints oh(2fig
singlet part ofB,, B,, C_, C_, of the form

(By)s € G (By)s € G (C)seGf (Co)s Gl (2:49)

3. N = 2 KdV equation in superspace

The methods used in the first section for the description of Nhe- 2 supersymmetric
Toda equations in extended superspace apply as well tavthe 2 KdV equation. The
formulation in N = 2 superspace that we shall give is strongly inspired fromNhe- 1
treatment given in [9]. Most of the notations that we use also come from [9].

3.1. Lax operators, gauge invariance

The relevant superalgebra is now the untwisted loop algebra constructed 22y, or

rather the quotiend™® (1|1) of this algebra by its centre. We thus consider the set of the

4 x 4 real matrices depending on a loop parametes in the first section, the supertrace

is defined as the alternate sum of diagonal elements, and we consider the superalgebra of
matrices with zero supertrace. Any function ofmultiplying the identity matrix is in the

centre of this algebra. We choose a representative in each equivalence class of the quotient
by the centre by requiring the last element on the diagonal to vanish. We introduce the
following odd elements

01 0 O 0O 0 0O
0 0 0O - 0 010 -
®=145 0 0 1 =100 0 0 A=w+ao (3.1)
0 0 0O A 0 0O
which satisfy
w?=0 @?=0 {w, @) = A2 (3.2)

A? is an even semisimple element of the superalgebra. We shall use the notations
K = ker adA? K=K, Kl K (3.3)

where [C, K} denotes the commutator subalgebrafgf and X' some complement. We
consider a gradatiod of the superalgebra defined byA”E; ;) = 4p + j —i. Notice that



4996 F Delduc and M Magro

o and® have grade 1, and? has grade 2. Th&/ = 2 superspace has a bosonic coordinate
x and two Grassmann coordinatésf. Supersymmetric covariant derivatives are

a a

~ _ a
D=—+460 D=-—-+460 d=_—. 3.4
20 + 90 * ox (34)
In analogy with the methods developed in [8], we introduce the spinor Lax operators
L=D+q+w L=D+g§+a (3.5)

where the superfieldg and g are A-independent odd matrices of non-positive grade. In
particular, the upper triangular elementsfand g vanish. The operatorg and £ are
required to satisfy zero curvature equations. Two of these equations are constrajnts on
andg

LL=0=Dg+4q+[§.0}=0 (3.6)

LL=0= DG+ +I[q.&}=0 (3.7)
while the third simply determines the vector Lax operator

Lo=LL+LL=20+0— A2 (3.8)

As in the Toda case, equations (3.6) and (3.7) may be interpreted as followse#th a
nilpotent element of the superalgebra, its image is included in its Kernel. The elements in
g which do not belong to the Kernel are fully determined in terms of those in the Kernel.
Moreover, the elements ip belonging to the image of adare unconstrainedvn = 2
superfields, while those belonging to the Kernel but not to the image satisfy chirality-type
constraints. Similar statements hold fprand o.

The form (3.5) of the Lax operators and the zero curvature equations (3.6) and (3.7) are
invariant under the gauge transformations

L— 3Lg7t L— gLg7t (3.9

where g(x, 6, 0) is a r-independent lower triangular matrix with 1’s along the diagonal.
Two particular gauge-fixings will be useful in the sequel. One is a vertical gauge

0 000
1 _1 w 0 0 0

Qe =0 ey = W 0 0 0 (3.10)
0O 0 0O

where W is an unconstrained/ = 2 superfield. As in the Toda case, the existence of this
gauge is shown by using th€ = 1 results established in [9] and taking into account the
constraints (3.6) and (3.7). Notice that this gauge is not of Drinfeld—Sokolov type. That
is to say that the gauge group element which bripgand g to this form is not a local
differential polynomial in the matrix elements @fandg. The other gauge we shall consider

is a diagonal gauge

# 0 00 0000

, |0 ¢ 00 o, [0 00

%% =10 0 0 0 % =10 0 ¢ O (3.11)
0 0 00 00 0O

whereg is chiral, D¢ = 0, and¢ is anti-chiral, D¢ = 0. Although the gauge (3.10) is not
of Drinfeld—Sokolov type, the superfiel may be expressed as a differential polynomial
in terms of the superfieldg and¢. This is the celebrated Miura transformation, which is
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most easily obtained by introducing a 4-vectbr= (1, V2, ¥3, ¥4)" which is annihilated
by the Lax operators
Ly =0 Ly =0. (3.12)

The first componenty; of the vectory is gauge invariant. The matrix equations (3.12)
reduce to scalar gauge-invariant differential equations/en In the vertical gauge, one
obtains

Dy1=0  DD@Y1— Wy1) = Ay (3.13)
and in the diagonal gauge
Dy1=0  DD(D+ @)D+ ¢)y1 =y (3.14)

which leads to the relatioW = —(¢¢ + D¢ + D).

3.2. Evolution equations, conserved charges

We wish to write evolution equations for the Lax operatdrand £ of the type

R oL .
% =AL—- LA —E =AL - LA (3.15)
ot at
and A is an even matrix belonging to the superalgeff&(1/1). As in _the bosonic case

[8], we first need to construct an even mathik commuting withZ and £
ML—LM=0 ML — LM =0. (3.16)

We decomposé! asM = M* + M~, where the grades i+ are positive or zero, and the
grades inM~ are strictly negative. Then we can take= M ™. In order to construct the
matrix M, we shall show that there exists a matfix= Z;";l F_,, d(F_,) = —n, which
brings £ and £ to the form

e =D+H+w eLef=D+H+a (3.17)
whereH = )" H_, andH =) ;°, H_, belong to the Kernek of adA?. At any finite
grade,F, H and H depend polynomially on the matrix elementsgofindg, and on their
derivatives. Suppose that the proof has been carried out down to the -gragiel for H

and H, and down to the graden for F. At the next grade, it will be convenient to look
first at the sumH + H. We have

H,+H ,=PH_,, H , F,)+[F,1,A) (3.18)
where P is a differential polynomial inH_,, I-_Lp with p < n and inF_, with p <n. We

A

choose the particular formm_,_; = G_,_»A — AG_,_». Then the last equation becomes
H,+H,=PH_, H, F,)+[A%G_,2]. (3.19)

We then use the fact that? is semisimple to conclude that we may chod@se,_» in such

a way thatH_, + H_, belongs tokC. To show that bothH_, and H_, belong tok, we use

the constraints (3.6), (3.7) coming from the zero curvature equations. They lead at grade
—n + 1 to the equations

DH 1+ Y [H , H ) +[H , 0}=0 (3.20)
ptq=n—1

Dl:lfn+l+ Z [I:prf I:I,q}—i-[l:l,n,a_)} =0 (321)
p+g=n—1

S[A,o ek  [H., o) ek (3.22)
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Thus we know thatH_, + H_,,, [bAL,,, w} and [I;_Ln, o} are inkC. Taking a supercommutator

of H_, + H_, with  or @ shows that alsof_,, @} and [H_,, v} are inKC. Then, using
the fact thatA? = {w, @} is semisimple, we conclude that , and H_, belong to/C. It
will be useful to splitH and H as

H=C+H H=C+H C,Ce[K,K) H H eK. (3.23)

On H' and H', the constraints (3.20), (3.21) reduce to the chirality conditib## = 0,
DH’' = 0. Notice also that & is only defined up to a left multiplication by ewith T in
K. As a consequencé{’ and H’' are only defined up to the addition of a total derivative

H' — H' + DT’ H — H' + DT'. (3.24)
Then, the integrated quantities

Q0= / dV.H' = / dx(DH")y_j—o (3.25)

0= /dVaH’ = /dx(Dﬁ/)gzgzo (3.26)

are not uniquely defined
0— 0+ / dx(DDT")y_s0 00— 0+ f dx(DDT')g_5_o. (3.27)
However, the sunQ + Q is uniquely defined

0+0—0+0+ / (207" )y_50= 0 + 0. (3.28)

The fact that this quantity is uniquely defined also implies that it is a gauge invariant
functional ofg andg. As we shall see next)_, + Q_, are the conserved charges of the
N = 2 KdV hierarchy. From now on, things work as in the bosonic case. We introduce
the matrix

M=e"bel (3.29)
whereb is a constant matrix in the centre & Then we choose
A=M =@ Fpel)t (3.30)

The equations (3.15) should be seen as evolution equations for gauge invariant differential
polynomials ofg andg. Let us study these equations éhand H’. Using the notation

~ a ~ ~ ~
B = eFEe‘F +efae” (3.31)
we obtain
oH N
e + DB = B(H + ) — (H +w)B (3.32)
0H - . .

It is a consequence of these equations thadbelongs to/C. Then the right-hand side of
these equations belongs t,[K}, and if we restrict toC’ we find

dOH' ) dOH'
+DB =0
dt dt

which implies thatQ + Q is time independent.

+DB' =0 (3.34)
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We studied in some detail the case= AA?, which has grade 6. We computed
the evolution equation for the superfield appearing in the gauge choice (3.10). When
computed on some gauge-fixed form of the Lax operators, the evolution equations (3.15)
acquire an extra term

ALy A ALy . A
7*”" = (A+R)Lys — Lof(A+R) Tgf = (A+R)Lys — Lor(A+ R (3.35)
where R belongs to the gauge algebra. The computation of the objectE and R is

somewhat lengthy. The final result is
aW/dt = 29°W — 29(DWDW) — 1aw>. (3.36)

This N = 2 KdV equation was obtained in [12]. Extensions of these results to the KdV
hierarchies associated with the superalgebtéasn) is in principle straightforward.

4. Conclusion

Let us consider the relation between our gauge invariant equations and the WZNW models.
In the bosonic [3] otV = 1 [4] cases, the gauge invariant field equations may be considered
as the field equations of a gauged WZNW model. This means in particular that if the gauge
fields are set to zero, and the field equations coming from the variation of these gauge fields
are dropped, one recovers the equation of motion of the WZNW model. In our case, since
we do not have an action, it is not clear which are the equations coming from the variation
of the gauge superfields. Naively, and in analogy with the bosonic case, one could expect
that the field equations of the connections are the constraints (2.14). If these constraints are
dropped, and the gauge fields are set to zero, one ends up with the following equations

D_(D.gg™H =0. (4.1)

These are very nice equations, possessing a very big loop invariance, but they are not the
N = 2 WZNW equations. In particular, th&% = 2 unconstrained superfielg contains
a dynamical vector field. The tru¥ = 2 WZNW equations [10] contain equation (4.1),
together with constraints on the superfigldconstructed from two classicalmatrices.
These constraints cannot be considered as a subset of the gauge-invariant constraints (2.14).
Thus at present the relation of our gauge invariant formulation with a gauged WZNW model
is unclear.

It is not a very big surprise to verify that methods which work in ordinary space and
in N = 1 superspace do extend /% = 2 superspace at the level of field equations.
It is considerably more difficult to obtain in extended superspace actions or Hamiltonian
formulations. However, as already stressed, an Hamiltonian reduction approaAck-ta
W algebras has been developed in [6]. This approach makes use of th& operator
product expansions for constrained supercurrents constructed in [10]. These operator product
expansions, or rather the Poisson brackets which may be derived from them, would be
relevant in a Hamiltonian formulation of the non-abeli&in= 2 Toda equations discussed
at the end of section 2. It is however not clear to us how they could be used in the
gauge-invariant approach to Toda or KdV equations.
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